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1.0 Summary 
 
This project is centered around the problem of computing all real points, curves, and surfaces 
embedded in 1 dimensional (1-D) and 2 dimensional (2-D) complex solution sets of polynomial 
systems.  Polynomial systems are sets of equations that can be used to model a variety of 
applications, ranging from robotic arms to biochemical reaction networks to vehicle stability 
control problems. 
 
There are currently excellent methods that find all complex solution sets (many continuation-
based methods are implemented in Bertini, created by four of the six team members), but there 
was previously no known way to extract the real solutions sets from the complex ones, except in 
a few very basic cases. The difficulty is that real solutions (points, curves, surfaces, etc.) can be 
hidden within higher-dimensional complex solution sets, and there seemed to be no 
straightforward way to dig them out. 
 
This project focused on the development and implementation of methods to do exactly this: 
compute all real solutions for polynomial systems, embedded in complex components of 
dimension one or two.  
 
The primary deliverable from this project is the publicly available software package Bertini Real 
(BR).  Various mathematical results were necessary to make this software package possible.  
All outcomes are described in Section 4.0.  Performance on particular tasks from the original 
proposal are summarized in the last part of Section 4.0, with the few specific shortcomings 
detailed at the very end of that section.
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2.0  Introduction 
 
2.1 Background on the Problem 
 
It is a fundamental problem to be able to compute and manipulate the real solution set of 
polynomial systems.  Much of classical mathematics deals with one form or another of this 
problem. Problems of pressing importance including mechanical engineering, graphics, 
numerical solution of systems of differential equations, and optimization would be significantly 
impacted by algorithms and software effectively solving this problem. 
 
Possibly the oldest approach to understanding geometric objects is by slicing: see the 
discussion of the Apollonius method in [7]. At the end of the 19th century this led to early 
versions (by Castelnuovo and Enriques) of what are now called the First and Second Lefschetz 
Theorems [10].  These theorems give a prescription to rebuild the homology of a projective 
manifold in terms of the homology of a general section and the homology of the singular 
sections of the manifold belonging to a general one-parameter family of hyperplane sections.  
 
In modern times, a Morse theory approach to this problem [1,2,6] initiated from a lecture by R. 
Thom led to much more general versions of the Lefschetz Theorems, and ultimately a Morse 
theory for singular algebraic sets [8]. 
 
In the computational algebra community the same approach led to cylindrical decompositions 
and structures such as roadmaps [3]. The literature on this is vast, but the algorithms have so 
far been unable to deal with all but the simplest cases. 
 
This projects back to the original inspiration for all of these developments: a pencil (i.e., a 
linear parameter family) of hyperplane sections. Using the powerful, efficient, and fast 
algorithms of numerical algebraic geometry, the approach by pencils of hyperplane sections 
may be used to give a numerically natural decomposition into cells. 
 
2.2 Cellular Decomposition 
 
The general idea of a cell decomposition is easiest to grasp by first considering piecewise linear 
sets such as polygonal curves, polyhedral surfaces, solid polyhedra, and, more generally, 
polytopes in higher dimensions. For a polygonal curve, one needs only to list the vertices (i.e., 
store a numerical value for each coordinate of each vertex) and then list the edges, each one 
consisting of a pair of integers indicating which vertices are the endpoints of the line segment. 
Since the edge is linear, this representation suffices to represent the whole edge. For a 
polyhedral surface with convex polygonal faces, this generalizes to a list of vertices, a list of 
edges, and a list of faces. General polyhedral surfaces can be so represented by first 
subdividing any nonconvex face into a union of convex pieces. It is typical to do so by breaking 
each face, even convex ones, into a set of triangles. This is common in computer graphics, 
where specialized hardware and software is designed to rapidly process huge numbers of 
triangles in parallel fashion on graphics cards. For polyhedral solids, one lists a union of 3-
dimensional cells, each a convex polyhedron, in terms of the faces that form the boundary of the 
cell, each of which has bounding edges, each of which terminates in vertices. All data is integer 
except for the numerical approximations of all the vertices. Polytopes in higher dimensions 
follow a similar scheme. 
 
When one wishes to represent a nonlinear curve or surface, etc., such as might be contained in 
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the real solutions of a polynomial system, one common approach is to approximate the set with 
a nearby piecewise linear one. This has two deficits: 
 

(1) it can take a dense set of linear pieces to approximate well the smooth set, a problem 
      that grows exponentially more severe with the dimension of the set, and 
  

(2) the piecewise linear approximation does not necessarily contain enough information 
      to produce a more accurate approximation to the smooth set, should that be required  
      in subsequent work with the set. 
 
The approach to cell decomposition that we use addresses both these deficits. It represents the 
smooth set with a sparse set of cells that retains all the information needed to refine the cells to 
as fine a level as might be desired. Each cell is represented by a similar hierarchy of vertices, 
edges, faces, etc., as in the piecewise linear case, except the edges, faces, and so on, are all 
algebraic,and hence potentially nonlinear. It is convenient to call vertices “0-cells,” edges “1-
cells,” faces “2-cells,” and so on. 
 
Without explicating all the details, the extra information stored in a k-cell, besides a list of 
pointers to the (k-1)-cells that form its boundary, is: 

* a polynomial system, say g, which has a k-dimensional irreducible component of  
    which the k-cell is a piece, 
  * a real projection, and 

* a numerical approximation of a general point, say w, in the interior of the cell. 
 
Instead of the convexity requirement placed on the cell decomposition of polyhedra, we require 
that: 
 

* the k-cell is homeomorphic to a k-dimensional ball (usually called a line segment for  
   k=1 and a disk for k = 2), and 
 
 * there exists a homotopy function h(x; t) = 0, so that for any connected 1-real- 
   dimensional path in the unit box, starting at w remains in the k=cell, is nonsingular 
   in the interior of the box, and approaches the boundary of the face whenever    
     approaches the boundary of the unit box. 
 
In the piecewise linear case, a decomposition of a polytope into convex cells, any point in the 
interior of a cell can be expressed as a convex linear combination of the vertices of the cell. This 
allows one to easily generate new points in the cell or subdivide the cell into smaller cells.  
Similarly, the homotopy function associated to a cell decomposition of a real algebraic set 
provides an equivalent capability to move at will within the cell and to subdivide the cell. In 
applications, such as to visualize a real algebraic set (or a projection of it to three dimensions) 
or to build a finite element mesh on it, one may subdivide to whatever resolution necessary to 
well-approximate the smooth set with a faceted discretization. 
 
2.3 Computing a Cellular Decomposition 
 
Many details on the computation of a cellular decomposition may be found in the new book [4] 
or the article [5].  Furthermore, some details of the method are described in Section 4A, about 
the software BR.  This is a long, complicated technique, so the details are best left to the 
references. 
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However, to illustrate the idea, let us consider the unit circle in the plane, using projection to the 
x-axis.  By solving some polynomial system, we may find the critical points with respect to the 
projection, namely (1,0) and (-1,0), having projection values -1 and 1, respectively.  Slicing 
between these two projection values, i.e., at x=0, we find two “interior” points of edges, namely 
(0,1) for the top edge and (0,-1) for the bottom edge.  By walking along the edges (via a 
homotopy), we discover the left and right endpoints (among the critical points) for each edge, 
thereby completing our initial cellular decomposition.  The result is a list of two edges, each with 
two endpoints and a midpoint.  
 
We can then refine an edge by choosing more gridpoints (not necessarily uniformly) between 
the two endpoints of the edge and using the homotopy to track along the edge away from the 
midpoint. 
 
This idea generalizes to surfaces and beyond.  As an example of a surface, take the unit sphere 
in the plane, with a projection down to the xy-plane.  The critical set is now the equator, a curve.  
This curve needs to be decomposed via a second projection, say to the x-axis, yielding the 
same diamond described in the case of the unit circle above.  Looking over the origin, we find 
two points (generic points for the top and bottom faces, much like the midpoint of an edge) and 
can represent each face as a 2-cell with a generic point and 1-cells along the boundary. 
 
One major complication is that these geometric objects need not be smooth.  One major 
outcome of this project is that there is now a way to handle any curve or surface in any 
dimension, not just those that are particularly nice. 
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3.0  Methods, Assumptions, and Procedures 
 
As this was a project in computational mathematics, there is little to say here.   
 
Subsets of the group met several times in various locations to discuss algorithms.  Brake (then 
a postdoc at Colorado State) and Hao (then a graduate student at Notre Dame) then spent 
much time working on software development while the more senior collaborators worked out 
details and theory.  Bates supervised Brake and Sommese supervised Hao. 
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4.0  Results and Discussion 
 
This section includes a description of the software package BR in some detail, followed by brief 
discussions about algorithms and theory and, finally, a task-by-task analysis of performance. 
 
4.1 Software 
 
4.1.1 Description 
 
BR is the main program produced during this project.  Written in C++, it uses the homotopy 
continuation solver Bertini and several free libraries, most namely Boost, to produce cellular 
decompositions for real embedded curves and surfaces for components of appropriate 
dimension for algebraic varieties.  BR is a command line tool compilable in OSX and *nix 
environments, and uses a few other custom utilities to produce a plot or STL file from a 
polynomial system. 
 
The main input for BR is a Bertini input file.  First, the user performs a numerical irreducible 
decomposition by calling tracktype 1 in Bertini.  As the output from this step, a witness_data file, 
is not human readable, and is difficult to parse, a utility called data2set is provided for the user 
to split the witness_data file into several witness_set files, which are required for BR.  This file 
contains only the relevant points, linears, and patches, for an individual component -- of which 
only one will be studied at a time in BR. 
 
The main program is called from the command line as bertini_real.  It has many options 
available at runtime via flags, such as -q for quick mode.  At this point, the program runs without 
further human input, until decomposition is complete.   
 
BR automatically detects the dimension of the component, and enters the appropriate mode for 
either a curve or a surface.  It begins by determining whether the component is self-conjugate, 
and performing isosingular deflation (if necessary).  This ensures that the remainder of the 
algorithm will function properly.   
 
4.1.2 Curve Decompositions with Bertini Real 
 
The curve algorithm first finds critical points, by performing a left-nullspace singularity 
calculation.  That is, given the original system f, BR finds points such that {Jf, π}, the Jacobian 
of the system together with the random real projection vector used to compute the 
decomposition, is singular.   As a matter of irrelevant consequence, it also finds left singular 
vectors. 
 
Between each of the real critical points found, BR slices to find real midpoints, from which it 
tracks left and right, relative to the particular projection π, to obtain the set of edges for the 
decomposition.  Finally, BR will merge away superfluous edges, if requested (and by default). 
 
A subsampler for refinement of curves is provided, as a separate callable program titled 
sampler.  From the midpoint of each edge, BR tracks to user-supplied tolerance, such that 
successive points on each edge are no further apart than the tolerance.  Hence, we can turn 
blocky curve decompositions into smooth figures with little effort.  See Figure 1 for an illustration 
of the subsampler. The curve is of degree 12, and consists of many edges.  On the left is the 
raw skeleton of edges produced by BR, and on the right is a refinement of the decomposition, to 
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a tolerance of 0.1 distance units.  Curve decomposition is integral to the surface decomposer, 
and was the first problem tackled. 
  
 

 
 

Figure 1.  Intersection of the Eistute System with a Sphere 
 
4.1.3 Surface Decompositions with Bertini Real 
 
BR will also decompose real embedded surfaces for components of dimension two.  The result 
is a skeleton of the surface, with a network of connected faces, with midpoints and a joining of 
edges of curves. 
 
The surface decomposer in BR depends on the curve decomposer, in that the main computed 
object is the critical curve, with respect to the two random real projections chosen for the 
computation.    After BR computes the critical points for the critical curve, and performs a curve 
decomposition on it, the program will intersect the surface with an automatically generated 
sphere of appropriate center and radius, such that all the important information is contained 
therein.  The user can also supply their own sphere of interest. 
 
Having the critical and sphere intersection curves, BR enters a slicing routine, wherein between 
and at each critical point for each of the critical and sphere curve, a merged curve 
decomposition is produced.   
 
The final step is to connect the dots, so to speak.  The midpoint for each face is the midpoint for 
an edge of a mid-slice, and we need to determine to which critical slices the midpoint connects.  
Using a custom written solver, using Bertini as the underlying tracker, BR tracks simultaneously 
three points on three different systems.  Having mapped face connections, the surface 
decomposition is complete. 
 
A sampler refinement method is under development at this time, with the ability to refine the 
triangulation formed by the initial decomposition to arbitrary tolerances chosen by the user at 
runtime. 
 
Perhaps the simplest example of a surface decomposition is provided by the unit sphere.  The 
decomposition consists of two faces, top and bottom, joined at the waistline of the sphere by the 
critical curve along the equator relative to the projections used.   See Figure 2. The result has 
two faces, in blue and red, along with the critical curve along a great circle on the surface. 
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Figure 2. Cellular Decomposition of a Sphere 
 
The torus is a simple non-trivial surface example.  Having a single hole in the center, the critical 
slices at the ends of the hole produce non-degenerate curve decompositions, so there is actual 
work for BR when connecting the midpoints of faces. The critical curve consists of two disjoint 
pieces, and typically eight edges. There are four critical slices, and three midslices, yielding a 
total of 8 faces. See Figure 3, with r=0.5, R=2.0, so that (x2 + y2 + z2 + R2 - r2)2 - 4R2(x2 + y2)=0. 

 
Figure 3. Cellular Decomposition of a Torus 

 
Decomposed with respect to a random set of two real projections, π1,2 as shown, it has 8 faces, 
and the critical curve has two disjoint pieces. Produced in under 20 seconds on a single 
processor. 
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A much more involved example is the Barth Sextic system, which can be sourced from  
http://cage.ugent.be/~hs/barth/barth.html.   The degree 6 surface is defined over the complex 
numbers, and obtaining a full 3-D model of the system has been challenging until now.  
Previously, animations or renderings were created using ray-tracing software such as the 
famous and robust POVRay.  Now, however, we have a 3-D model of the system, and for the 
first time can produce an STL model suitable for 3-D printing, in a reasonable amount of time.  
The initial decomposition in Figure 4 took approximately 3.5 hours on four cores on a laptop 
computer.  A cluster can perform the decomposition much quicker, and the program has been 
further parallelized since this particular decomposition was obtained. Top: On the left is the 
skeleton of curves, also decomposed by BR, which are connected to each other to make the 
faces of the right hand side.  The system is defined by three spatial variables, and has a total of 
65 singular points, with the vertices of two parallel dodecahedrons embedded therein.  Bottom: 
A rendering of an STL file, from which one could 3-D-print the surface. 
 
 

       

              
 

Figure 4.  The Barth Sextic System, as Decomposed by Bertini Real 
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4.1.4 Challenges 
 
BR is a numerical tool, and subject to the natural challenges and issues from this field.  Such 
problems as numerical thresholding, convergence tolerances, etc, arise in BR.   
 
The main hurdles for successful BR decomposition are ensuring that paths track successfully.  
This requires that the pre-endgame tolerance is set tightly enough, but not too tightly - runtimes 
become exceedingly long when tolerances are too tight. 
 
4.1.5 Other Tools Produced 
 
The command line tool BR is accompanied by Matlab code to visualize the results.  This in turn 
spurred the development of an alternate human interface through the Leap Motion controller, so 
that the user can interact with the decompositions on screen without contact with any object, 
simply by waving fingers around.   
 
The production of STL files for 3-D printing has also been automated.  Users may input a 
polynomial system having a surface as solution set and receive a 3-D model of the surface as 
output.  This seems to be the first software package of this sort. 
 
4.1.6 Obtaining Bertini Real 
 
BR is version controlled via Subversion, and the latest version of the repository is available for 
checkout to the public without credentials, at svn://paramotopy.com/bertini_real. 
 
Documentation, produced automatically by Doxygen, is available at bertinireal.paramotopy.com. 
 
 
 
4.2 Mathematical Results Supporting Software 
 
This project has resulted in (a) 3 algorithms for finding real solutions, (b) a technical result 
supporting a particular point in these algorithms, and (c) an algorithm for computing the real 
numerical irreducible decomposition.  As all three of these products will appear in publications, 
we provide only overviews of them here.   
 
4.2.1 Algorithms for 1-D, 2-D, 3-D Real Cellular Decomposition 
 
Previously, there were known algorithms for decomposing the real solutions within a complex 
curve (in general) and those within a complex surface (making specific assumptions on the type 
of surface), but no implementation of any such method. 
 
One outcome of this work is that there are now complete algorithms for decomposing the real 
solutions within any complex curve or surface, along with the implementation described above.  
This extension of previously-known methods hinged on the recent development of isosingular 
deflation for desingularizing algebraic sets with generic multiplicity greater than 1.  Another 
(minor) outcome of this work is that isosingular deflation has now been implemented in Matlab 
and is part of the BR package described above. 
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Another outcome is work towards an algorithm for real solutions within 3-dimensional complex 
solution sets.  This algorithm is now fully understood and there is progress on writing it down for 
a publication.  There is a fundamental increase in complexity when moving from dimension k to 
dimension k+1 with the methods of this project, and even the 3-dimensional version of the 
technique is far more technical than expected.  Ultimately, while such an algorithm for 
decomposing the real solutions of dimension N (any N) is feasible, it seems that it will actually 
be exceedingly difficult to implement correctly. 
 
4.2.2 Finding the Critical Points of the Critical Curve 
 
By far the most complicated issue with the methods of this project is the detection of the critical 
points on the critical curve of a surface.  In particular, given a polynomial system with N-2 
equations in N variables and two projections, it is necessary to know how to find the critical 
points (under one projection) of the critical curve given by the other projection.  There are a 
number of approaches to this.  One outcome of this project is a proof of the theorem in Figure 5. 
 

         
Figure 5. A Theorem Yielding a Computationally Feasible Approach 

 
4.2.3 Real Numerical Irreducible Decomposition 
 
A side project from the originally proposed research is the computation of the real numerical 
irreducible decomposition of a polynomial system.  This is a numerical irreducible 
decomposition of the Zariski closure of the real solutions of the system, i.e., a decomposition of 
those complex solution sets that necessarily contain a real component.  This is useful as a 
preprocessing step to decomposing the real solutions within the (possibly many) complex 
solution sets of a polynomial system.  Indeed, by detecting those complex components with  
no chance of harboring real point, they can be eliminated from subsequent consideration. 
 
The subroutines needed to compute the real numerical irreducible decomposition are nearly 
identical to those needed for the real cellular decomposition described above. As a result, this 
computation was a natural corollary to the main part of the project. 
 
Such a decomposition is useful, for example, as an assemblability test in mechanical 
engineering. Here, the real solutions of the system describe how to assemble a mechanism. 
Thus, from a real numerical irreducible decomposition, one can decide if there exists an 
assembly as well as the degrees of freedom of the mechanism once it has been assembled. 
Such information may not be available from the classical numerical irreducible decomposition 
since the real and complex dimensions can be different. 
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One mechanism where this occurs is a cubic-centered 12-bar mechanism, first presented in 
[11]. This mechanism is described by 17 polynomials in 18 variables so that the complex 
dimension is at least one. However, there are configurations of the mechanism that are rigid 
over the real numbers, i.e., isolated real solutions.  The computation of the real numerical 
irreducible decomposition of the polynomial system describing this mechanism identifies those 
complex components containing real solutions and also picks out some real solutions buried 
within some of the complex components. 
 
For this example, there are 17 polynomials in 18 variables.  Since the complex curves are the 
nondegenerate components of interest, the 8 irreducible curves are analyzed.  Six of them have 
degree 4 while two have degree 6.  Since a computation using the method of Hauenstein in [9] 
yields a smooth real point on each of the first 6, they are necessarily real radical. That 
computation also shows that the degree 6 curves have real points, but those points were 
singular.  After further computation, it becomes clear that there are no real smooth points on the 
two degree 6 curves, so the real numerical irreducible decomposition of the mechanism curves 
consist of six curves of degree 4 and two points that lie in the intersection of the two degree 6 
curves. 
 
 
4.3 Performance on Proposed Tasks 
 
The originally proposed project consisted of 10 tasks plus one optional task given time.  Our 
performance on each task is indicated in the next section, with specific explanations for 
incomplete tasks described in the following section.  Put simply, the principle goal of this project 
(methods and software for finding real solutions) was completed, and the only missing pieces 
are optimizations and automations that turned out to be unnecessary. 
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4.3.1 Overview 
Table 1. Final Status of Project Tasks 

 

Task Status Notes 

1. Isosingular deflation code complete in BR 

2. 1-D cellular algorithm complete  

3. 1-D cellular code complete in BR 

4. 2-D cellular algorithm complete  

5. 2-D cellular code complete in BR 

6. Real NID algorithm complete will appear in publication 

7. 3-D cellular algorithm 80% known, not yet written up 

8. Increased efficiency, isosingular deflation adequate see below 

9. Analyzing isosingular deflation approaches adequate see below 

10. Real NID code 75% see below 

11. 3-D cellular code (optional) 50% optional; some supporting 
subroutines  
in BR 

 
4.3.2 More Detailed Comments 

 
Task 7:   It is now clear how this algorithm goes, but it is highly technical and has therefore not 
yet been written down.  The plan is to eventually put this in a publication. 
 
Tasks 8 and 9:  While more analysis could be conducted about the efficiency of isosingular 
deflation, the fact is that the current implementation choices are more than adequate for BR.  
Isosingular deflation is not a major component of the computational cost of the main algorithms, 
so there is no practical point in spending time optimizing it. 
 
Task 10:  Given the subroutines implemented in BR, it is feasible to compute the real NID in an 
ad hoc manner.  However the main algorithm for calling these subroutines has not yet been 
completed. 
 
Task 11:  This task was optional.  The intention is to include this code in Bertini 2.0 (along with 
the rest of BR), once we have built the foundation of that redevelopment of Bertini. 
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5.0 Conclusions 
 
All told, we developed the methods and software intended, missing only some of the lowest 
level optimization (which turned out to be unnecessary) and highest level of coding (task 10). 
 
Researchers now have the ability to use software to find real solution sets of polynomial 
systems embedded in complex curves and surfaces.  This was not previously possible in this 
level of generality.  The hope is that this significantly improves the ability of modelers to use 
polynomial systems in their models, rather than relying so heavily on (not necessarily optimal) 
linear models. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 

 
1-D 
2-D 
3-D 
BR 

1 dimensional 
2 dimensional 
3 dimensional 
Bertini Real software package 
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